Classification Of Brain Tumor On Ct Images Using Texture Analysis

  • Ms Word Format
  • 67 Pages
  • ₦5,000
  • 1-5 Chapters
CLASSIFICATION OF BRAIN TUMOR ON CT IMAGES USING TEXTURE ANALYSIS

Abstract

The identification, segmentation and detection of infecting area in brain tumor MRI images are a tedious and time-consuming task. The different anatomy structure of human body can be visualized by an image processing concepts. It is very difficult to have vision about the abnormal structures of human brain using simple imaging techniques. Magnetic resonance imaging technique distinguishes and clarifies the neural architecture of human brain.

MRI technique contains many imaging modalities that scans and capture the internal structure of human brain. In this study, we have concentrated on noise removal technique, extraction of gray-level co-occurrence matrix (GLCM) features, DWT-based brain tumor region growing segmentation to reduce the complexity and improve the performance. This was followed by morphological filtering which removes the noise that can be formed after segmentation.

]The probabilistic neural network classifier was used to train and test the performance accuracy in the detection of tumor location in brain MRI images. The experimental results achieved nearly 100% accuracy in identifying normal and abnormal tissues from brain MR images demonstrating the effectiveness of the proposed technique.

Introduction

In image processing, images convey the information where input image is processed to get output also an image. In today’s world, the images used are in digital format. In recent times, the introduction of information technology and e-healthcare system in medical field helps clinical experts to provide better health care for patients. This study reveals the problem segmentation of abnormal and normal tissues from MRI images using gray-level co-occurrence matrix (GLCM) feature extraction and probabilistic neural network (PNN) classifier. The brain tumor is an abnormal growth of uncontrolled cancerous tissues in the brain. A brain tumor can be benign and malignant. The benign tumor has uniformity structures and contains non-active cancer cells. The malignant tumor has non-uniformity structures and contains active cancer cells that spread all over parts.

According to world health organization, the grading system scales are used from grade I to grade IV. These grades classify benign and malignant tumor types. The grade I and II are low-level grade tumors while grade III and IV are high-level grade tumors. Brain tumor can affect individuals at any age. The impact on every individual may not be same. Due to such a complex structure of human brain, a diagnosis of tumor area in brain is challenging task.

The malignant-type grade III and IV of tumor is fast growing. Affects the healthy brain cells and may spread to other parts of the brain or spinal cord and is more harmful and may remain untreated. So detection of such brain tumor location, identification and classification in earlier stage is a serious issue in medical science. By enhancing the new imaging techniques, it helps the doctors to observe and track the occurrence and growth of tumor-affected regions at different stages so that they can take provide suitable diagnosis with these images scanning.

The key issue was detection of brain tumor in very early stages so that proper treatment can be adopted. Based on this information, the most suitable therapy, radiation, surgery or chemotherapy can be decided. As a result, it is evident that the chances of survival of a tumor-infected patient can be increased significantly if the tumor is detected accurately in its early stage.

The segmentation was employed to determine the affected tumor part using imaging modalities. Segmentation is process of dividing the image to its constituent parts sharing identical properties such as color, texture, contrast and boundaries.

The research paper is organized as follows: Sect. 2 presents the related works literature survey, Sect. 3presents the materials and methods with the steps used in the proposed technique, Sect. 4 presents the results and discussion, Sect. 5 presents the performance analysis, and finally Sect. 6 contains the conclusion and future scope.

0 Shares:
Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like